Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.099
Filtrar
1.
PLoS One ; 19(4): e0301528, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635694

RESUMO

An inexpensive and high-performing solid Coumarone resin was added to Styrene-butadiene-styrene (SBS) copolymer-modified asphalt to enhance its storage stability and road performance. To assess the effect of Coumarone resin dosage on the SBS-modified asphalt, a series of laboratory tests were conducted. The composite modified asphalt's segregation test was used to evaluate its storage stability, Dynamic Shear Rheometer (DSR) and Multiple Stress Creep Recovery (MSCR) tests were employed to investigate its high-temperature performance and permanent deformation resistance, and the Bending Beam Rheology (BBR) test was utilized to measure its low-temperature performance. Fluorescence microscopy was used to observe the composite modified asphalt's microstructure, and Fourier Transform Infrared Spectroscopy (FTIR) was conducted to study the changes in chemical structure during the modification process. The results showed that Coumarone resin can improve the compatibility of SBS and asphalt, improve the high-temperature performance and deformation resistance of SBS-modified asphalt, and adding an appropriate amount of Coumarone resin can help enhance the low-temperature cracking resistance of modified asphalt. The optimal dosage of Coumarone resin recommended for SBS-modified asphalt performance enhancement is 2% under the test conditions, as determined by comparing the test results of samples with various dosages.


Assuntos
Benzofuranos , Hidrocarbonetos , Estireno , Temperatura Baixa , Resinas Vegetais
2.
Sci Total Environ ; 926: 171928, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38531457

RESUMO

Styrene butadiene rubber is one of the main constituents of tire tread. During tire life, the tread material undergoes different stresses that impact its structure and chemical composition. Wear particles are then released into the environment as weathered material. To understand their fate, it is important to start with a better characterization of abiotic and biotic degradation of the elastomer material. A multi-disciplinary approach was implemented to study the photo- and thermo- degradation of non-vulcanized SBR films containing 15 w% styrene as well as their potential biodegradation by Rhodoccocus ruber and Gordonia polyisoprenivorans bacterial strains. Each ageing process leads to crosslinking reactions, much surface oxidation of the films and the production of hundreds of short chain compounds. These degradation products present a high level of unsaturation and oxidation and can be released into water to become potential substrates for microorganisms. Both strains were able to degrade from 0.2 to 1.2 % (% ThOD) of the aged SBR film after 30-day incubation while no biodegradation was observed on the pristine material. A 25-75 % decrease in the signal intensity of water extractable compounds was observed, suggesting that biomass production was linked to the consumption of low-molecular-weight degradation products. These results evidence the positive impact of abiotic degradation on the biodegradation process of styrene butadiene rubber.


Assuntos
Butadienos , Elastômeros , Borracha , Estirenos , Estireno , Água
3.
J Chromatogr A ; 1720: 464807, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38461769

RESUMO

A method based on novel restricted access materials (RAMs) for the determination of neonicotinoid pesticides in Goji samples using offline and online solid phase extraction (SPE) coupled with high-performance liquid chromatography (LC). RAMs were synthesized using poly(chloromethylstyrene-co-divinylbenzene) (PVBC/DVB) microspheres as substrate, styrene (St) and n-vinylpyrrolidone (NVP) were first copolymerized on the interior to construct adsorption sites, and sulfobetaine methacrylate (SBMA) was then polymerized on the exterior to form exclusion sites via two-step surface initiated-atom transfer polymerization. The prepared PVBC/DVB@poly(St-co-NVP)@poly(SBMA) RAMs could efficiently extract neonicotinoid pesticides and automatically exclude proteins. Under the optimized conditions, the developed methods of offline (magnetic SPE and SPE column) and online extraction coupled with LC both using PVBC/DVB@poly(St-co-NVP)@poly(SBMA) RAMs as the extractant, exhibit a wide linearity, low limits of detection and limit of quantification and good inter-day and intra-day precision with satisfactory recoveries. Among these methods, online extraction coupled with LC based on novel RAMs exhibits clear advantages for the determination of neonicotinoid pesticides in Goji samples has clear advantages, such as simple operation by direct injection, short extraction times, and high accuracy with less human error.


Assuntos
Praguicidas , Polímeros , Humanos , Polímeros/química , Praguicidas/análise , Adsorção , Extração em Fase Sólida/métodos , Estireno , Cromatografia Líquida de Alta Pressão/métodos
4.
Environ Mol Mutagen ; 65(1-2): 67-75, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525651

RESUMO

Genotoxicity of styrene monomer was evaluated in male Fischer 344 rats using the alkaline comet assay for DNA damage, micronucleus assay for cytogenetic damage and the Pig-a assay for gene mutations. In a dose range finding (DRF) study, styrene was administered by oral gavage in corn oil for 28 consecutive days at 0, 100, 500, and 1000 mg/kg/day. The bioavailability of styrene was confirmed in the DRF by measuring its plasma levels at approximately 7- or 15-min following dosing. The 1000 mg/kg/day group exceeded the maximum tolerated dose based on body weight and organ weight changes and signs of central nervous system depression. Based on these findings, doses of 0, 100, 250, and 500 mg/kg/day (for 28 or 29 days) were selected for the genotoxicity assays. Animals were sacrificed 3-4 h after treatment on Day 28 or 29 for assessing various genotoxicity endpoints. Pig-a mutant frequencies and micronucleus frequencies were determined in peripheral blood erythrocytes. The comet assay was conducted in the glandular stomach, duodenum, liver, lung, and kidney. These studies were conducted in accordance with the relevant OECD test guidelines. Oral administration of styrene did not lead to genotoxicity in any of the investigated endpoints. The adequacy of the experimental conditions was assured by including animals treated by oral gavage with the positive control chemicals ethyl nitrosourea and ethyl methane sulfonate. Results from these studies supplement to the growing body of evidence suggesting the lack of in vivo genotoxic potential for styrene.


Assuntos
Dano ao DNA , Estireno , Ratos , Masculino , Animais , Ratos Endogâmicos F344 , Ratos Sprague-Dawley , Estireno/toxicidade , Eritrócitos , Ensaio Cometa/métodos , Testes para Micronúcleos/métodos , Testes de Mutagenicidade/métodos
5.
Crit Rev Toxicol ; 54(2): 134-151, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38440945

RESUMO

Risk assessment of human health hazards has traditionally relied on experiments that use animal models. Although exposure studies in rats and mice are a major basis for determining risk in many cases, observations made in animals do not always reflect health hazards in humans due to differences in biology. In this critical review, we use the mode-of-action (MOA) human relevance framework to assess the likelihood that bronchiolar lung tumors observed in mice chronically exposed to styrene represent a plausible tumor risk in humans. Using available datasets, we analyze the weight-of-evidence 1) that styrene-induced tumors in mice occur through a MOA based on metabolism of styrene by Cyp2F2; and 2) whether the hypothesized key event relationships are likely to occur in humans. This assessment describes how the five modified Hill causality considerations support that a Cyp2F2-dependent MOA causing lung tumors is active in mice, but only results in tumorigenicity in susceptible strains. Comparison of the key event relationships assessed in the mouse was compared to an analogous MOA hypothesis staged in the human lung. While some biological concordance was recognized between key events in mice and humans, the MOA as hypothesized in the mouse appears unlikely in humans due to quantitative differences in the metabolic capacity of the airways and qualitative uncertainties in the toxicological and prognostic concordance of pre-neoplastic and neoplastic lesions arising in either species. This analysis serves as a rigorous demonstration of the framework's utility in increasing transparency and consistency in evidence-based assessment of MOA hypotheses in toxicological models and determining relevance to human health.


Assuntos
Neoplasias Pulmonares , Humanos , Camundongos , Ratos , Animais , Neoplasias Pulmonares/induzido quimicamente , Medição de Risco , Estireno/toxicidade , Incerteza
6.
Environ Pollut ; 346: 123628, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38395129

RESUMO

Epidemiological evidence concerning effects of simultaneous exposure to noise and benzene, toluene, ethylbenzene, xylene, and styrene (BTEXS) on renal function remains uncertain. In 2020, a cross-sectional study was conducted among 1160 petrochemical workers in southern China to investigate effects of their co-exposure on estimated glomerular filtration rate (eGFR) and mild renal impairment (MRI). Noise levels were assessed using cumulative noise exposure (CNE). Urinary biomarkers for BTEXS were quantified. We found the majority of workers had exposure levels to noise and BTEXS below China's occupational exposure limits. CNE, trans, trans-muconic acid (tt-MA), and the sum of mandelic acid and phenylglyoxylic acid (PGMA) were linearly associated with decreased eGFR and increased MRI risk. We observed U-shaped associations for both N-acetyl-S-phenyl-L-cysteine (SPMA) and o-methylhippuric acid (2-MHA) with MRI. In further assessing the joint effect of BTEXS (ß, -0.164 [95% CI, -0.296 to -0.033]) per quartile increase in all BTEXS metabolites on eGFR using quantile g-computation models, we found SPMA, tt-MA, 2-MHA, and PGMA played pivotal roles. Additionally, the risk of MRI associated with tt-MA was more pronounced in workers with lower CNE levels (P = 0.004). Multiplicative interaction analysis revealed antagonisms of CNE and PGMA on MRI risk (P = 0.034). Thus, our findings reveal negative dose-effect associations between noise and BTEXS mixture exposure and renal function in petrochemical workers. With the exception of toluene, benzene, xylene, ethylbenzene, and styrene are all concerning pollutants for renal dysfunction. Effects of benzene, ethylbenzene, and styrene exposure on renal dysfunction were more pronounced in workers with lower CNE.


Assuntos
Glioxilatos , Nefropatias , Ácidos Mandélicos , Exposição Ocupacional , Humanos , Benzeno/análise , Xilenos/análise , Tolueno/análise , Estireno/análise , Estudos Transversais , Derivados de Benzeno/análise , Exposição Ocupacional/análise
7.
J Chromatogr A ; 1719: 464740, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38401373

RESUMO

Desktop 3D printers that operate by the fused deposition modeling (FDM) mechanism are known to release numerous hazardous volatile organic compounds (VOCs) during printing, including some with potential carcinogenic effects. Operating in a similar manner to FDM 3D printers, 3D pens have gained popularity recently from their ability to allow users to effortlessly draw in the air or create various 3D printed shapes while handling the device like a pen. In contrast to numerous modern 3D printers, 3D pens lack their own ventilation systems and are often used in settings with minimum airflow. Their operation makes users more vulnerable to VOC emissions, as the released VOCs are likely to be in the breathing zone. Consequently, monitoring VOCs released during the use of 3D pens is crucial. In this study, VOCs liberated while extruding acrylonitrile butadiene styrene (ABS) filaments from a 3D pen were measured by solid-phase microextraction (SPME) combined with gas chromatography/mass spectrometry (GC/MS). SPME was investigated using the traditional fiber and Arrow geometries with the DVB/Carbon WR/PDMS sorbent while four different brands of ABS filaments-Amazon Basics, Gizmodork, Mynt 3D, and Novamaker-were used with the 3D pen. Heatmap analysis showed differentiation among these brands based on the liberated VOCs. The nozzle temperature and printing speed were found to affect the number and amount of released VOCs. This study goes a step further and presents for the first time a comparison between 3D pen and a desktop 3D printer based on liberated VOCs. Interestingly, the findings reveal that the 3D pen releases a greater number and amount of VOCs compared to the printer. The amounts of liberated VOCs, as indicated by the corresponding chromatographic peak areas, were found to be 1.4 to 62.6 times higher for the 3D pen compared to the 3D printer when using SPME Arrow.


Assuntos
Acrilonitrila , Butadienos , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Microextração em Fase Sólida/métodos , Impressão Tridimensional , Estireno
8.
Microb Cell Fact ; 23(1): 69, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38419048

RESUMO

We are interested in converting second generation feedstocks into styrene, a valuable chemical compound, using the solvent-tolerant Pseudomonas putida DOT-T1E as a chassis. Styrene biosynthesis takes place from L-phenylalanine in two steps: firstly, L-phenylalanine is converted into trans-cinnamic acid (tCA) by PAL enzymes and secondly, a decarboxylase yields styrene. This study focuses on designing and synthesizing a functional trans-cinnamic acid decarboxylase in Pseudomonas putida. To achieve this, we utilized the "wholesale" method, involving deriving two consensus sequences from multi-alignments of homologous yeast ferulate decarboxylase FDC1 sequences with > 60% and > 50% identity, respectively. These consensus sequences were used to design Pseudomonas codon-optimized genes named psc1 and psd1 and assays were conducted to test the activity in P. putida. Our results show that the PSC1 enzyme effectively decarboxylates tCA into styrene, whilst the PSD1 enzyme does not. The optimal conditions for the PSC1 enzyme, including pH and temperature were determined. The L-phenylalanine DOT-T1E derivative Pseudomonas putida CM12-5 that overproduces L-phenylalanine was used as the host for expression of pal/psc1 genes to efficiently convert L-phenylalanine into tCA, and the aromatic carboxylic acid into styrene. The highest styrene production was achieved when the pal and psc1 genes were co-expressed as an operon in P. putida CM12-5. This construction yielded styrene production exceeding 220 mg L-1. This study serves as a successful demonstration of our strategy to tailor functional enzymes for novel host organisms, thereby broadening their metabolic capabilities. This breakthrough opens the doors to the synthesis of aromatic hydrocarbons using Pseudomonas putida as a versatile biofactory.


Assuntos
Carboxiliases , Cinamatos , Pseudomonas putida , Estireno/metabolismo , Pseudomonas/genética , Pseudomonas/metabolismo , Carboxiliases/genética , Carboxiliases/metabolismo , Pseudomonas putida/metabolismo , Fenilalanina/metabolismo
9.
Chembiochem ; 25(7): e202300833, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38306174

RESUMO

The styrene monooxygenase, a two-component enzymatic system for styrene epoxidation, was characterised through the study of Fus-SMO - a chimera resulting from the fusion of StyA and StyB using a flexible linker. Notably, it remains debated whether the transfer of FADH2 from StyB to StyA occurs through diffusion, channeling, or a combination of both. Fus-SMO was identified as a trimer with one bound FAD molecule. In silico modelling revealed a well-distanced arrangement (45-50 Å) facilitated by the flexible linker's loopy structure. Pre-steady-state kinetics elucidated the FADox reduction intricacies (kred=110 s-1 for bound FADox), identifying free FADox binding as the rate-determining step. The aerobic oxidation of FADH2 (kox=90 s-1) and subsequent decomposition to FADox and H2O2 demonstrated StyA's protective effect on the bound hydroperoxoflavin (kdec=0.2 s-1) compared to free cofactor (kdec=1.8 s-1). At varied styrene concentrations, kox for FADH2 ranged from 80 to 120 s-1. Studies on NADH consumption vs. styrene epoxidation revealed Fus-SMO's ability to achieve quantitative coupling efficiency in solution, surpassing natural two-component SMOs. The results suggest that Fus-SMO exhibits enhanced FADH2 channelling between subunits. This work contributes to comprehending FADH2 transfer mechanisms in SMO and illustrates how protein fusion can elevate catalytic efficiency for biocatalytic applications.


Assuntos
Peróxido de Hidrogênio , Oxigenases , Oxigenases/metabolismo , Estireno , Simulação por Computador , Cinética , Flavina-Adenina Dinucleotídeo/metabolismo
10.
J Control Release ; 368: 344-354, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417559

RESUMO

Adaptive drug release can combat coagulation and inflammation activation at the blood-material interface with minimized side effects. For that purpose, poly(styrene-alt-maleic-anhydride) copolymers were conjugated to heparin via coagulation-responsive linker peptides and shown to tightly adsorb onto poly(ethersulfone) (PES)-surfaces from aqueous solutions as monolayers. Coagulation-responsive release of unfractionated as well as low molecular weight heparins from the respective coatings was demonstrated to be functionally beneficial in human plasma and whole blood incubation with faster release kinetics resulting in stronger anticoagulant effects. Coated poly(ethersulfone)/poly(vinylpyrrolidone) (PES/PVP) flat membranes proved the technology to offer an easy, effective and robust anticoagulant interfacial functionalization of hemodialysis membranes. In perspective, the modularity of the adaptive release system will be used for inhibiting multiple activation processes.


Assuntos
Coagulação Sanguínea , Polímeros , Humanos , Polímeros/química , Heparina/química , Anticoagulantes/farmacologia , Estireno
11.
Anal Methods ; 16(4): 485-495, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38167879

RESUMO

Three-dimensional (3D) printing in tissue engineering and biosensing of analytes by using biocompatible materials or modifying surface structures is an upcoming area of study. This review discusses three common surface modification techniques, viz. alkaline hydrolysis, UV light photografting, and plasma treatment. Alkaline hydrolysis involves the reaction of an alkaline solution with the surface of a material, causing the surface to develop carboxyl and hydroxyl groups. This technique can enhance the biocompatibility, surface wettability, adhesion, printability, and dyeability of materials, such as acrylonitrile butadiene styrene (ABS), polycarbonate, and polylactic acid (PLA). This review also mentions details about some of the surface-modified 3D-printed diagnostic devices. Although most of the devices are modified using chemical processes, there are always multiple techniques involved while designing a diagnostic device. We have, therefore, mentioned some of the devices based on the materials used instead of categorising them as per modification techniques. 3D printing helps in the design of sophisticated shapes and structures using multiple materials. They can, therefore be used even in the design of microfluidic devices that are very useful for biosensing. We have also mentioned a few materials for printing microfluidic devices.


Assuntos
Plásticos , Impressão Tridimensional , Materiais Biocompatíveis , Engenharia Tecidual , Estireno
12.
J Neuroinflammation ; 21(1): 4, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178142

RESUMO

BACKGROUND: Redox imbalance and inflammation have been proposed as the principal mechanisms of damage in the auditory system, resulting in functional alterations and hearing loss. Microglia and astrocytes play a crucial role in mediating oxidative/inflammatory injury in the central nervous system; however, the role of glial cells in the auditory damage is still elusive. OBJECTIVES: Here we investigated glial-mediated responses to toxic injury in peripheral and central structures of the auditory pathway, i.e., the cochlea and the auditory cortex (ACx), in rats exposed to styrene, a volatile compound with well-known oto/neurotoxic properties. METHODS: Male adult Wistar rats were treated with styrene (400 mg/kg daily for 3 weeks, 5/days a week). Electrophysiological, morphological, immunofluorescence and molecular analyses were performed in both the cochlea and the ACx to evaluate the mechanisms underlying styrene-induced oto/neurotoxicity in the auditory system. RESULTS: We showed that the oto/neurotoxic insult induced by styrene increases oxidative stress in both cochlea and ACx. This was associated with macrophages and glial cell activation, increased expression of inflammatory markers (i.e., pro-inflammatory cytokines and chemokine receptors) and alterations in connexin (Cxs) and pannexin (Panx) expression, likely responsible for dysregulation of the microglia/astrocyte network. Specifically, we found downregulation of Cx26 and Cx30 in the cochlea, and high level of Cx43 and Panx1 in the ACx. CONCLUSIONS: Collectively, our results provide novel evidence on the role of immune and glial cell activation in the oxidative/inflammatory damage induced by styrene in the auditory system at both peripheral and central levels, also involving alterations of gap junction networks. Our data suggest that targeting glial cells and connexin/pannexin expression might be useful to attenuate oxidative/inflammatory damage in the auditory system.


Assuntos
Conexinas , Estireno , Ratos , Masculino , Animais , Conexinas/metabolismo , Estireno/toxicidade , Estireno/metabolismo , Ratos Wistar , Junções Comunicantes/metabolismo , Neuroglia/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Estresse Oxidativo , Modelos Teóricos
13.
Int J Biol Macromol ; 258(Pt 1): 128799, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38110165

RESUMO

Using a solvent-free radical grafting technique, glycidyl methacrylate (GMA) and maleic anhydride (MAH) were used as functionalized graft monomers, styrene (St) as a copolymer monomer, and grafted onto polylactic acid (PLA). A series of PLA-g-(GMA/MAH-co-St) graft copolymers were prepared by adjusting the GMA/MAH ratio. Subsequently, the prepared graft copolymers were used as a compatibilizer with PLA and polypropylene carbonate (PPC) for melt blending to prepare PLA/PPC/PLA-g-(GMA/MAH-co-St) blends. The effects of changes in the GMA/MAH ratio in the graft copolymer on the thermodynamics, rheology, optics, degradation performance, mechanical properties, and microstructure of the blend were studied. The results found that GMA, MAH, and St were successfully grafted onto PLA, and the PLA-g-(GMA/MAH-co-St) graft copolymer obtained from the reaction had a good toughening effect on the PLA/PPC blend system, which significantly improved the mechanical properties of the PLA/PPC/PLA-g-(GMA/MAH-co-St) blend without reducing its degradation performance, resulting in a biodegradable blend material with excellent comprehensive performance. In the PLA-g-(GMA/MAH-co-St) grafting reaction system, when GMA/MAH = 1.5/1.5 (w/w), the grafting degree of the graft copolymer increased most significantly, from 0.83 phr to 1.51 phr. This composition of graft copolymer can effectively improve the compatibility between PLA and PPC. The resulting PLA/PPC blend can maintain good melt flow properties (MFR of 14.51 g/10 min), high transparency, and low haze (light transmittance of 91.56 %, haze of 20.5 %), while significantly improving its thermal stability (T95%, Tmax, and Et increased by 12.87 °C, 20.33 °C, and 32.00 kJ/mol, respectively). Moreover, when introducing PLA-g-(GMA/MAH-co-St) (GMA/MAH = 1.5/1.5 (wt/wt)) graft copolymer into the system, the toughness of the PLA/PPC/PLA-g-(GMA/MAH-co-St) blend system is optimal, with the notch impact strength and fracture elongation increasing to 184.6 % and 535.4 % of the PLA/PPC blend, respectively, at which point the fracture surface of the impact sample shows a wrinkled fracture feature indicative of toughness.


Assuntos
Compostos de Epóxi , Metacrilatos , Poliésteres , Polímeros , Poliésteres/química , Polímeros/química , Polipropilenos , Anidridos Maleicos , Estireno
14.
Enzyme Microb Technol ; 174: 110381, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38134734

RESUMO

Indigo, an economically important dye, could be biosynthesized from indole by catalysis of the styrene monooxygenase StyAB. To enhance indigo biosynthesis, the styAB gene and its transcription regulator gene styS/styR in styrene catabolism were cloned from Pseudomonas putida and coexpressed in Escherichia coli. The presence of the intact regulator gene styS/styR dramatically increased the transcriptional levels of styA and styB by approximately 120-fold in the recombinant strain SRAB2 with coexpression of styS/styR and styAB compared to the control strain ABST with solo expression of styAB. A yield of 67.6 mg/L indigo was detected in strain SRAB2 after 24 h of fermentation with 120 µg/mL indole, which was approximately 14-fold higher than that in the control strain ABST. The maximum yield of indigo was produced from 160 µg/mL indole in fermentation of strain SRAB2. However, the addition of styrene to the media significantly inhibited the transcription of styA and styB and consequent indigo biosynthesis in recombinant E. coli strains. Furthermore, the substitution of indole with tryptophan as the fermentation substrate remarkably boosted indigo production, and the maximal yield of 565.6 mg/L was detected in strain SRAB2 in fermentation with 1.2 mg/mL tryptophan. The results revealed that the regulation of styAB transcription by the two-component regulator StyS/StyR in styrene catabolism in P. putida was effective in E. coli, which provided a new strategy for the development of engineered E. coli strains with the capacity for highly efficient indigo production.


Assuntos
Escherichia coli , Índigo Carmim , Escherichia coli/genética , Escherichia coli/metabolismo , Triptofano , Indóis/metabolismo , Estireno/metabolismo , Oxigenases/genética , Oxigenases/metabolismo
15.
Environ Res ; 245: 118016, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38154563

RESUMO

Recovery of carbon fibres and resin from wind turbine blade waste (WTB) composed of carbon fibres (CF)-reinforced unsaturated polyester resin (UPR) has been environmentally challenging due to its complex structure that is not biodegradable and that is rich in highly toxic styrene (main component of UPR). Within this framework, this paper aims to liberate CF and UPR from WTB using a pyrolysis process. The treatment was performed on commercial WTB (CF/UPR) up to 600 °C using a 250 g reactor. The UPR fraction was decomposed into liquid and gaseous phases, while CF remained as a residue. The composition of gaseous phase was monitored during the entire treatment using a digital gas analyser, while gas chromatography-mass spectrometry (GC-MS) was used to characterize the collected liquid phase. CF fraction was collected and exposed to additional oxidation process after treatment at 450 °C for purification propose, then it was analysed using FTIR and SEM-EDX. Finally, the life cycle assessment (LCA) of the CF/UPR pyrolysis was studied using SimaPro software and the results were compared with landfill disposal practices. The pyrolysis results manifested that 500 °C was sufficient for UPR decomposition into styrene-rich oil and gaseous products with yields of 15.23 wt% and 6.83 wt%, respectively, accompanied by 77.93 wt% solid residue including CF. The LCA results showed that pyrolysis with oxidation process has high environmental potential in WTB recycling with significant reduction in several impact categories compared to landfill. However, the pyrolysis scenario revealed several additional environmental burdens related to ecosystems, acidification, Ozone formation, and fine particulate matter formation that must be overcome before upscaling.


Assuntos
Ecossistema , Pirólise , Fibra de Carbono , Poliésteres , Estireno , Carbono
16.
Int J Mol Sci ; 24(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38003579

RESUMO

Polymer nanoparticles continue to be of high interest in life science applications. Still, adsorption processes occurring in protein-containing media and their implications for biological responses are not generally predictable. Here, the effect of nanoparticle composition on the adsorption of bovine serum albumin (BSA), fibronectin (FN) and immunoglobulin G (IgG) as structurally and functionally different model proteins was explored by systematically altering the composition of poly(methyl methacrylate-co-styrene) nanoparticles with sizes in a range of about 550 nm. As determined by protein depletion from the suspension medium via a colorimetric assay, BSA and IgG adsorbed at similar quantities, while FN reached larger masses of adsorbed protein (up to 0.4 ± 0.06 µg·cm-2 BSA, 0.42 ± 0.09 µg·cm-2 IgG, 0.72 ± 0.04 µg·cm-2 FN). A higher content of styrene as the more hydrophobic polymer component enhanced protein binding, which suggests a contribution of hydrophobic interactions despite the particles exhibiting strongly negatively charged surfaces with zeta potentials of -44 to -52 mV. The quantities of adsorbed proteins were estimated to correspond to a confluent surface coverage. Overall, this study illustrated how protein binding can be controlled by systematically varying the nanoparticle bulk composition and may serve as a basis for establishing interfaces with a targeted level of protein retention and/or presentation.


Assuntos
Nanopartículas , Estireno , Polimetil Metacrilato , Soroalbumina Bovina/química , Imunoglobulina G , Metacrilatos , Adsorção , Propriedades de Superfície
17.
Environ Sci Pollut Res Int ; 30(56): 118065-118077, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37924396

RESUMO

The water quality implications of transferring stormwater through pipes composed of concrete (new and used), polyvinyl chloride (PVC), galvanized corrugated steel (GCS), high-density polyethylene (HDPE), and pipes subjected to cured in place pipe (CIPP) and spray in place pipe (SIPP) trenchless repair technologies on stormwater quality are reviewed. Studies involve either the use of flowing water or an immersion experimental design, with data showing contact with pipe materials can affect stormwater quality parameters including pH, electrical conductivity (EC), and concentrations of minerals, metals, and organic constituents, e.g. styrene. 'In-transport' changes in pH (1-3 units), EC (2-3-fold), bicarbonate (3-44-fold), and calcium (2-17-fold) in stormwaters were reported following exposure to concrete pipes. Differences between the use of synthetic and field-collected stormwater were identified, e.g. turbidity levels in field-collected stormwater reduced on passage through all pipe types, compared to synthetic water where levels of turbidity on exposure to concrete and cement-based SIPP increased slightly. Transfer through PVC and HDPE pipes had minimal effects on physicochemical parameters, whereas exposure to galvanized corrugated steel pipes led to increases in EC, Zn, and Pb. Though limited data was available, the use of CIPP repairs and associated waste condensate generated during thermal curing and/or incomplete curing of resins was identified to release organic contaminants of concerns (e.g. styrene, vinylic monomers, dibutyl phthalate (DBP), diethyl phthalate (DEP), and benzaldehyde). The implications of findings for both future research and stakeholders with responsibility for reducing diffuse pollution loads to receiving waters are considered.


Assuntos
Polietileno , Qualidade da Água , Estireno , Dibutilftalato , Aço
18.
Eur Phys J E Soft Matter ; 46(11): 107, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37917241

RESUMO

Virus-like particles (VLPs) are noninfectious nanocapsules that can be used for drug delivery or vaccine applications. VLPs can be assembled from virus capsid proteins around a condensing agent, such as RNA, DNA, or a charged polymer. Electrostatic interactions play an important role in the assembly reaction. VLPs assemble from many copies of capsid protein, with a combinatorial number of intermediates. Hence, the mechanism of the reaction is poorly understood. In this paper, we combined solution small-angle X-ray scattering (SAXS), cryo-transmission electron microscopy (TEM), and computational modeling to determine the effect of ionic strength on the assembly of Simian Vacuolating Virus 40 (SV40)-like particles. We mixed poly(styrene sulfonate) with SV40 capsid protein pentamers at different ionic strengths. We then characterized the assembly product by SAXS and cryo-TEM. To analyze the data, we performed Langevin dynamics simulations using a coarse-grained model that revealed incomplete, asymmetric VLP structures consistent with the experimental data. We found that close to physiological ionic strength, [Formula: see text] VLPs coexisted with VP1 pentamers. At lower or higher ionic strengths, incomplete particles coexisted with pentamers and [Formula: see text] particles. Including the simulated structures was essential to explain the SAXS data in a manner that is consistent with the cryo-TEM images.


Assuntos
Proteínas do Capsídeo , Capsídeo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Capsídeo/química , Capsídeo/metabolismo , Estireno/análise , Estireno/metabolismo , Espalhamento a Baixo Ângulo , Difração de Raios X , Vírus 40 dos Símios/química , Vírus 40 dos Símios/genética , Vírus 40 dos Símios/metabolismo , Montagem de Vírus
19.
ACS Biomater Sci Eng ; 9(11): 6103-6111, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37874178

RESUMO

Poly(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS) with eminent elasticity, thermoplastic ability, and biological stability has aroused great interest in the medical area. However, bacteria can easily adhere to the hydrophobic SEBS surface to cause medical device-related infections. In this work, SEBS is modified to prepare the SEBS-polydopamine (PDA)-poly(lysine) quaternary ammonium derivative (PLQ) antibacterial surface by PDA deposition and surface grafting techniques to solve bacterial infections. PDA is used as an intermediate layer and presents an excellent photothermal effect. The grafted polymer PLQ has antimicrobial quaternary ammonium cation groups, which plays synergistic bactericidal therapy with PDA. The SEBS-PDA-PLQ surface almost totally suppresses the growth of bacteria with a surface bacterial survival rate of 0.05% under laser irradiation. The outstanding antibacterial activity of the SEBS-PDA-PLQ surface is attributed to the synergistic effects of the photothermal performance of PDA and quaternary ammonium cationic functional groups of PLQ. In addition, the membrane SEBS-PDA-PLQ shows good hydrophilicity, antiprotein adsorption ability, chemical stability, and biocompatibility. This antibiotic-free antimicrobial approach has great potential for practical application in solving infections associated with medical devices.


Assuntos
Compostos de Amônio , Estireno , Antibacterianos/farmacologia , Antibacterianos/química , Cátions/farmacologia
20.
Environ Sci Pollut Res Int ; 30(54): 115152-115163, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37880400

RESUMO

Since the outbreak of the COVID-19 pandemic, the discarded face masks have attracted widespread attention in society. In line with sustainable development, a physicochemical treatment method was used to recycle discarded face masks into styrene-butadiene-styrene (SBS) modified bitumen. Utilizing the highly adhesive polydopamine-polyethyleneimine (PDA-PEI) coating, it has improved the surface damage of the discarded face mask fibers (DFMF) caused by natural aging and mechanical fragmentation, simultaneously strengthening the connection between the fibers and bitumen. At 46 °C, the 2% embellish-face mask fiber (E-FMF)/SBS modified bitumen, compared to the 2%DFMF/SBS modified bitumen, exhibited improvements in complex modulus (G*), elastic modulus (G'), and loss modulus (G″) by 12.27%, 16.39%, and 13.35%, respectively. Furthermore, at 0.1 kPa and 3.2 kPa, the creep recovery rate (R) increased by 23.3% and 32%, and the average creep compliance (Jnr) decreased by 54.7% and 64%. It was demonstrated that DFMF adhered with the coating, were more effective in improving the mechanical properties, deformation resistance, and shear resistance of the bitumen. This approach enriches the application scenarios of discarded single-use face masks and supports environmental protection and road construction.


Assuntos
Máscaras , Pandemias , Humanos , Hidrocarbonetos , Estireno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...